Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Two optically active isoquinoline derivatives

Andrzej Gzella, ${ }^{\text {a }}{ }^{*}$ Danuta Brózda, ${ }^{\text {b }}$ Łukasz Koroniak ${ }^{\text {b }}$ and Maria D. Rozwadowska ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Organic Chemistry, K. Marcinkowski University of Medical Sciences Poznań, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and baculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland Correspondence e-mail: akgzella@eucalyptus.usoms.poznan.pl

Received 10 May 2002
Accepted 4 July 2002
Online 20 July 2002

In the two title optically active tetrahydroisoquinoline derivatives, namely 3-hydroxymethyl-4-phenyl-1,2,3,4-tetra-hydroisoquinolin-2-ium bromide methanol hemisolvate, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-} \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}$, (IIb), and 2-formyl-3-hydroxy-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$, (III), the absolute configurations have been confirmed as $3 R, 4 R$ by structure refinement using Bijvoet-pair reflections. The hydroxymethyl and phenyl groups in (II b) are oriented in equatorial and pseudo-equatorial positions, respectively, whereas in (III), the corresponding groups are in axial and pseudo-axial positions, respectively; the hydroxymethyl and phenyl groups are trans with respect to one another in both structures. The heterocyclic rings in (IIb) and (III) adopt envelope conformations inverted with respect to each other. In both structures, the molecules are linked through hydrogen bonds.

Comment

One of the steps in our synthesis of 4-phenyl-1,2,3,4-tetra-hydroisoquinoline-3-carboxylic acid (4-phenyl-Tic), (IV), from (+)-thiomicamine, (I), involved N-formylation of the intermediate 3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline hydrobromide, ($\mathrm{II} a$), to give 2 -formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline, (III) (Brózda et al., 2000; see Scheme). The absolute configuration of both compounds, i.e. of (II a) and (III), as $3 R, 4 R$ was implied by the $1 S, 2 S$ configuration of the starting material (+)-thiomicamine, (I), and mechanistic considerations (Brózda et al., 2000).

A half-chair or envelope conformation with a trans equa-torial-pseudo-equatorial orientation of the C3 and C4 substituents in (II a), respectively, was confirmed by the value of the coupling constant $(J=10.2 \mathrm{~Hz})$ between atoms H 3 and H 4 in the ${ }^{1} \mathrm{H}$ NMR spectrum. This value corresponds to that of axial-pseudo-axial H atoms in cyclohexene derivatives (Ehil
\& Wilen, 1994) and also to those in other trans-3,4-disubstituted tetrahydroisoquinoline derivatives (Bohe et al., 1999; Pedrosa et al., 2001).

(I)

(Ila)

(III)

(II)

(II b)

(IV)

In the ${ }^{1} \mathrm{H}$ NMR spectrum of formamide (III), however, atoms H3 and H4 appear as singlets, suggesting a conformational inversion within the hydrogenated heterocyclic ring. We suspected that intramolecular hydrogen bonding involving the hydroxyl H and amide O atoms was responsible for this change (Brózda et al., 2000). Such a ring inversion would then place these H atoms in equatorial-pseudo-equatorial positions, respectively, with a torsion angle θ of $c a 90^{\circ}$, for which, according to the Karplus equation, ${ }^{3} J \simeq 0$ (Haasnoot et al., 1980). There was also a possibility of steric hindrance between

Figure 1
The molecular structure of (II b), showing the atomic labelling scheme. Only one position of the disordered C20 atom is shown. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are drawn as spheres of an arbitrary size.
the C3 substituent and the introduced N-formyl group, resulting in a change of conformation. In order to solve this problem, X-ray single-crystal analyses were performed on compounds (II b) and (III).

The asymmetric unit of (IIb) contains one 3-hydroxy-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline molecule in the form of its ammonium cation (i.e. with an $\mathrm{NH}_{2}{ }^{+}$group), a Br^{-}anion and half a methanol molecule (Fig. 1). In compound (III), the asymmetric unit contains two independent 2 -formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline molecules (Fig. 2).

The results obtained for the title compounds confirm the absolute $3 R, 4 R$ configuration of both compounds proposed earlier on the basis of ${ }^{1} \mathrm{H}$ NMR studies (Brózda et al., 2000). Moreover, upon formylation of (II), the distorted envelope conformation of the heterocyclic ring in the tetrahydroisoquinoline system [Cremer \& Pople (1975) puckering parameters for (IIb): $Q=0.512(3) \AA, \Theta=132.4$ (3) $)^{\circ}$ and $\Phi=$ $131.9(5)^{\circ}$; for (III): $Q=0.446(2) \AA, \Theta=52.1(3)^{\circ}$ and $\Phi=$ $310.6(3)^{\circ}$ (molecule A), and $Q=0.469(2) \AA, \Theta=53.5(2)^{\circ}$ and $\Phi=302.1(3)^{\circ}$ (molecule $\left.\left.B\right)\right]$ has undergone inversion, leading to a change in the mutual orientation of the substi-

(a)

(b)

Figure 2
The molecular structure of (a) molecule A and (b) molecule B of (III). Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are drawn as spheres of an arbitrary size.
tuents at C3 and C4. The deviation of atom C3 from the almost planar system of the other five atoms of the heterocyclic ring is 0.691 (4) \AA for (IIb), 0.611 (2) \AA for molecule A of (III) and 0.646 (2) \AA for molecule B of (III) (Sheldrick, 1997). In (II b), the substituents at C3 and C4 have a mutually trans equa-torial-pseudo-equatorial orientation, but in (III), they have a trans axial-pseudo-axial orientation. A similar stereochemistry of the partially reduced isoquinoline core of (II b) and (III) seems to be preserved in solution, as may be judged from the values of the coupling constants in their ${ }^{1} \mathrm{H}$ NMR spectra (see above). In (II b), the torsion angle $\mathrm{C} 11-\mathrm{C} 3-$ C4-C13 [-58.5 (3) ${ }^{\circ}$] indicates a synclinal conformation of the C 11 atom in the hydroxymethyl group with respect to the C 13 atom of the phenyl group, while in (III), the analogous angle $\mathrm{C} 13-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 15\left[-157.89(16)^{\circ}(\right.$ molecule $A)$ and $-161.42(14)^{\circ}$ (molecule B)] reveals a mutual orientation between anticlinal and antiperiplanar for atoms C13 and C15. It can be concluded that the above-mentioned inversion of the conformation of the hetrocyclic ring in the partially reduced isoquinoline core occurred as a result of a steric hindrance between the C3-hydroxymethyl substituent and the N-formyl group or/and a change in the hybridization state of atom N 2 , which suggests a considerable contribution of the ionic form in the resonance hybrid of the amide group. The $\mathrm{N} 2-\mathrm{C} 11$ bond distance $[1.324$ (3) \AA (molecule A) and 1.318 (2) \AA (molecule $B)$] is somewhat shorter than a tertiary amide distance [1.346 (5) Aं; Allen et al., 1987]. The sum of the valency angles around N2 is $359.8(3)^{\circ}$ for molecule A and $359.6(3)^{\circ}$ for molecule B.

In (II b), the methanol solvate molecule lies near the twofold rotation axis, showing orientational disorder (see Experimental).

The hydroxyl group in molecule A of (III) also exhibits orientational disorder. Both positions of the hydroxyl group favour the formation of an intermolecular hydrogen bond with atom O 12 of the carbonyl group of molecule B (Table 2).

In the crystal lattice of (IIb), the Br^{-}anion is involved in three hydrogen bonds as an H -atom acceptor. In these bonds, the H -atom donors are the N 2 atoms from two different molecules and atom O12 of the hydroxyl group belonging to a third molecule (Table 1). Additionally, there is a possible intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1). In this way, chains are formed parallel to the y axis.

In the crystal lattice of (III), the A and B molecules are connected by hydrogen bonds (O141 $\cdots \mathrm{O} 12 B^{\mathrm{i}}$, O142 $\cdots \mathrm{O} 12 B^{\mathrm{i}}$ and $\mathrm{O} 14 B \cdots \mathrm{O} 12 A^{\mathrm{ii}}$; see Table 2 for symmetry codes), forming chains parallel to the y axis. A comparison of IR absorption in spectra of (III), recorded in the solid state (KBr) and in solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, suggests the existence of similar intermolecular interactions in both phases.

Experimental

Compounds (IIb) and (III) were prepared according to the method of Brózda et al. (2000). Crystals of both compounds suitable for singlecrystal X-ray diffraction analysis were selected directly from the analytical samples.

Compound (IIb)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-} \cdot 0.5 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=336.25$
Monoclinic, C2
$a=20.5882(14) \AA$
$b=6.4413$ (6) A
$c=11.7354$ (6) \AA
$\beta=91.004(5)^{\circ}$
$V=1556.0(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.435 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 58 \\
& \quad \text { reflections } \\
& \theta=10.2-29.4^{\circ} \\
& \mu=3.58 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.43 \times 0.14 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection
Kuma KM-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.395, T_{\text {max }}=0.699$
2953 measured reflections
2827 independent reflections
2713 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.020
$$

$\theta_{\text {max }}=70.1^{\circ}$
$h=-24 \rightarrow 24$
$k=-7 \rightarrow 7$
$l=0 \rightarrow 14$
2 standard reflections every 100 reflections intensity decay: 3.4\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
2827 reflections
198 parameters
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0498 P)^{2}\right. \\
& +0.8792 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.019 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1205 \text { Friedel reflections } \\
& \text { Flack parameter }=-0.01(2)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (IIb).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Br}^{\mathrm{i}}$	$0.91(4)$	$2.40(4)$	$3.259(3)$	$157(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}$	$0.99(5)$	$2.37(5)$	$3.298(2)$	$158(3)$
$\mathrm{O} 12-\mathrm{H} 12 \cdots \mathrm{Br}$				
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 12^{\mathrm{iii}}$	$0.80(5)$	$2.74(5)$	$3.339(3)$	$132(4)$

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y,-z$; (ii) $x, 1+y, z$; (iii) $x, y-1, z$.

Compound (III)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=267.32$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.097(2) \AA$
$b=11.742(2) \AA$
$c=21.829(4) \AA$
$V=2844.3(9) \AA$
$Z=8$
$D_{x}=1.248 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 45
reflections
$\theta=14.9-26.1^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.52 \times 0.16 \times 0.11 \mathrm{~mm}$

Data collection

Kuma KM-4 diffractometer	$h=0 \rightarrow 13$
$\omega-2 \theta$ scans	$k=0 \rightarrow 14$
5771 measured reflections	$l=-26 \rightarrow 26$
5213 independent reflections	2 standard reflections
4350 reflections with $I>2 \sigma(I)$	every 100 reflections
$R_{\text {int }}=0.028$	intensity decay: 6.8%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.099$
$S=1.05$
5213 reflections
375 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0599 P)^{2}\right.$
$+0.1727 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0054 (3)
Absolute structure: Flack (1983),
2181 Friedel reflections
Flack parameter $=-0.1(2)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 141-\mathrm{H} 141 \cdots \mathrm{O} 12 B^{\mathrm{i}}$	0.82	2.12	$2.912(3)$	161
$\mathrm{O} 142-\mathrm{H} 142 \cdots \mathrm{O} 12 B^{\mathrm{i}}$	0.82	2.18	$2.958(6)$	158
$\mathrm{O} 14 B-\mathrm{H} 14 B \cdots \mathrm{O} 12 A^{\mathrm{ii}}$	0.82	2.04	$2.797(3)$	154
$\mathrm{C} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 12 B^{\mathrm{i}}$	0.98	2.53	$3.287(3)$	134
$\mathrm{C} 3 B-\mathrm{H} 3 B \cdots \mathrm{O} 12 A^{\mathrm{ii}}$	0.98	2.50	$3.235(3)$	132
$\mathrm{C} 8 B-\mathrm{H} 8 B \cdots \mathrm{O} 14 B^{\mathrm{iii}}$	0.93	2.59	$3.426(3)$	151

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1+x, y, z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The positions of the H atoms bonded to N and O atoms in the partially reduced isoquinoline core of (IIb) were obtained from difference Fourier maps and were refined freely. For molecule A of (III), the hydroxyl group, which was disordered over two positions (O141 and O142, with occupation factors of 67 and 33%), was allowed to rotate freely around the $\mathrm{C}-\mathrm{O}$ bond. Atoms H141/H142 was placed geometrically and converged to positions that could be interpreted as favourable for the formation of hydrogen bonds. The remaining H atoms of (IIb) and (III) were positioned geometrically, and were refined with a riding model $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$) and with $U_{\text {iso }}$ values constrained to be 1.5 (for hydroxyl H atoms) or 1.2 (for all other H atoms) times the U_{eq} value of the parent atom.

In (IIb), the methanol solvate molecule lies near the twofold axis and shows orientational disorder; the equivalent isotropic displacement parameter of atom O 19 is high $\left[0.211(5) \AA^{2}\right]$, and is associated with an interatomic $\mathrm{O} 19-\mathrm{C} 20$ distance $[1.247$ (14) Å] shortened by about 11σ relative to the normal value for a $\mathrm{Csp}^{3}-\mathrm{O}$ single bond [1.413 (4) Å; Allen et al., 1987]. The position of atom O19 was fixed on the twofold axis, and atom C20 was introduced with a site-occupation factor of 50%. A significant degree of disorder of the methanol solvate molecule prevents identification of the positions of the H atoms, so making it difficult to perform a correct determination of the positions of the O and C atoms in the molecule. Nevertheless, the assumption of the inverse positions of the atoms leads to worse results.

For both compounds, data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was financially supported by KBN grant No. 3-T09A 02717.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1510). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bohe, L., Lusinchi, M. \& Lusinchi, X. (1999). Tetrahedron, 55, 141-154.
Brózda, D., Koroniak, Ł. \& Rozwadowska, M. D. (2000). Tetrahedron Asymmetry, 11, 3017-3025.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Ehil, E. L. \& Wilen, S. H. (1994). Stereochemistry of Organic Compounds, pp. 729. New York: Wiley-Interscience.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Haasnoot, C. A. G., de Leeuw, F. A. A. M. \& Altona, C. (1980). Tetrahedron, 36, 3783-2792.
Kuma (1991). KM-4 Software. Version 1991t. Kuma Diffraction, Wrocław, Poland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pedrosa, R., Andres, C., Iglesias, J. M. \& Obeso, M. A. (2001). Tetrahedron, 57, 4005-4014.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.

